High-Flux Graphene Oxide Nanofiltration Membrane Intercalated by Carbon Nanotubes

Yi Han, Yanqiu Jiang, and Chao Gao*

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

Supporting Information

ABSTRACT: A sort of novel high-flux nanofiltration membrane was fabricated by synergistic assembling of graphene and multiwalled carbon nanotubes (MWNTs), in which graphene played the role of molecular sieving and MWNTs expanded the interlayer space between neighboring graphene sheets. The MWNT-intercalated graphene nanofiltration membrane (G-CNTm) showed a water flux up to 11.3 L m⁻² h⁻¹ bar⁻¹, more than 2 times that of the neat graphene nanofiltration membrane (GNm), while keeping high dye rejection (>99% for Direct Yellow and >96% Methyl Orange). The G-CNTm also showed good rejection ratio for salt ions (i.e., Na₂SO₄, NaCl). We also explored the antifouling performance of G-CNTm and GNm with bovine serum albumin (BSA), sodium alginate (SA) and humic acid (HA). Both G-CNTm and GNm possessed excellent antifouling performance for SA and HA but inferior for BSA because of the strong interaction between protein and graphene sheets.

KEYWORDS: graphene membrane, carbon nanotubes, high-flux, nanofiltration, antifouling

INTRODUCTION

Graphene is mechanically robust,¹ chemical resistant²,³ and impermeable to gas and water.⁴ As a result, this one-atom-thick two-dimensional (2D) carbon material is a promising candidate for next generation separation nanomaterials by making specified pores on it.⁵,⁶ It also has been proved that graphene membranes (GMs) formed by stacked graphene oxide (GO) or chemically converted graphene (CCG) with aligned 2D nanochannel arrays can efficiently separate molecules in gas or liquid phase.⁷⁻¹⁸ Especially, owing to the frictionless and ultrafast water flow inside the well-defined carbon nanochannels, GMs are thought to have great potential in the water treatment field.¹¹,¹³,¹⁵⁻¹⁷,¹⁹⁻²¹ GMs can be obtained simply by vacuum filtration or spin coating from GO solution due to the high aspect ratio of GO sheets. The high-speed, low-cost and environmentally benign fabrication processes endow GMs the potential possibility for large-scale production.² Because of the strong hydrogen bonds and hydrophobic interaction between GO flakes, these GMs are able to keep the structural integration in air and water surroundings.¹²,²²

The mass transportation in GM greatly relies on their microstructure and the feed graphene derivates. The size of the nanochannel formed by adjacent graphene flakes or wrinkled graphene in GMs varies from 1 to 5 nm, leading to a wide range of pure water flux from tens to hundreds L m⁻² h⁻¹ bar⁻¹.¹⁰,¹¹,¹₃,¹₄,¹₇,¹ₘ Li's group first prepared GM using CCG by vacuum filtration and explored the potential application in nanofiltration (NF) process which showed pure water flux of 40 L m⁻² h⁻¹ bar⁻¹ and rejection ratio of 67% for Direct Yellow (DY).¹⁰ The sub-3 nm corrugation on CCG is thought to be the water transport channels, of which size can be adjusted by the hydrothermal treatment temperature. Similarly, taking advantage of the corrugation on the graphene sheets, Huang et al. reported that GO membrane showed an 85% rejection ratio for Evans blue (EB) with a high water flux of 71 L m⁻² h⁻¹ bar⁻¹.¹⁴ Mi's group applied a layer-by-layer method to deposit GO nanosheets on a porous support and 1,3,5-benzentricarbonyl trichloride as a cross-linking reagent. They demonstrated that a 15-layered GO membrane showed a 26% rejection for 0.01 M Na₂SO₄ solution with water flux around 25 L m⁻² h⁻¹ bar⁻¹.¹³

Although previously reported GMs showed high pure water flux, the rejection ratios were usually much lower than those of commercial NF membranes, so that they can barely be called NF membranes. We also reported a neat graphene nanofiltration membrane (GNm) made by densely stacked CCG with a comparable rejection ratio to commercial NF membrane (60% for 0.01 M Na₂SO₄ and 99% for dyes), but possessing a limited water flux (3.3 L m⁻² h⁻¹ bar⁻¹).²³ It was hypothesized that the narrow space between graphene sheets in GMs might be the main reason for their low water flux. In the present paper, to further increase the water flux of GNm, we designed a graphene/carbon nanotubes composite membranes (G-CNTm) by assembling refluxed GO (rGO) and multiwalled carbon nanotubes (MWNTs) on a porous substrate, as shown in Figure 1a,b. In this design, we applied MWNTs as a

Published: April 2, 2015

Accepted: April 2, 2015

Received: February 2, 2015

© 2015 American Chemical Society

8147 ACS Appl. Mater. Interfaces 2015, 7, 8147–8155
"nanowedge" to expand the interlayer space between neighbor graphene sheets. As expected, the pure water flux of the optimized G-CNTms was more than 2 times that of the GNm counterpart without losing the rejection ratios to organic dyes (>99% for Direct Yellow and >96% Methyl Orange). This paper provides a new strategy for the design of high-performance graphene-based membranes and also gives us a deep understanding of the real transport and rejecting mechanism of GNm. Additionally, for the first time, the antifouling ability of these graphene base membranes was also investigated and discussed.

EXPERIMENTAL SECTION

Materials.

Graphite powder (40 μm) was purchased from Qingdao Henglide Graphite Co., Ltd. MWNTs were purchased from Tsinghua-Nahine Nano-Powder Commercialization Engineering Centre in Beijing (>95% purity). Polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes with a pore size of 50 nm were provided by the Beijing Hai Cheng Shi Jie Co., Ltd. The AAO disk (Anodisc 47) with a pore size of around 200 nm was purchased from Whatman. Direct Yellow (C_{16}H_{10}N_{2}Na_{2}O_{7}S_{2}) and Methyl Orange (C_{14}H_{14}N_{3}SO_{3}Na) were provided by Heowns Biochemical Technology CO., Ltd. All the other reagents were purchased from Aldrich and used as received. Milli-Q water was applied in all the testing and preparation processes.

Characterization.

X-ray diffraction (XRD) measurement was carried out on X’Pert PRO diffractometer equipped with Cu Kα radiation (40 kV, 40 mA). The morphology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electronic microscopy (SEM) system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM2010 electron microscope at 200 kV. The surface topology of membranes was observed by a Hitachi S4800 field-emission scanning electron micros...
sample with effective area 2.27 cm2 (A) sealed by rubber O-ring and glass cement was used in every experiment. The water flux J (L m$^{-2}$ h$^{-1}$ bar$^{-1}$) was measured by collecting the permeate water (V) through the membrane using an electronic balance (0.01 g) and calculated using the following equation:

$$J = \frac{V}{A \times t \times P}$$

where t is the operation time. The pure water flux (J_p) was recorded after 1 h of filtration when it went steady at 5 bar and neutral pH. After we switched to salt or dye solution, the permeate flux was determined when the retention rate became stable. Retentate and permeate concentrations (C_r and C_p respectively) were recorded both during and at the end of each run to monitor the evolution of rejection ratios. The rejection ratios can be calculated by the following equation:

$$R = \frac{1 - \frac{C_p}{C_r}}{C_r} \times 100\%$$

The rejection ratios of different salts were measured by the sequence of Na$_2$SO$_4$, MgSO$_4$, NaCl and MgCl$_2$ at the concentration of 0.01 M. Before we switched to a different feeding solution, the membrane was washed by pure water directly in the filtration cell with stirring at 450 rpm for 30 min followed by filtrating pure water for 1 h to eliminate the effect of the former solute.

The capabilities of separating organic dyes from water were tested applying Direct Yellow (DY, 899 Da) and Methyl Orange (MO, 233 Da). First, the rejecting ratio for Na$_2$SO$_4$ of a new membrane sample was tested to make sure the membrane is of proper quality. After a pure water wash, the membrane surface was exposed to dye solution (40 mL) for more than 12 h to rule out the adsorption effect. Then the tank was fed with 0.9 g L$^{-1}$ of different salts were measured by the sequence of Na$_2$SO$_4$, MgSO$_4$, NaCl and MgCl$_2$ at the concentration of 0.01 M. Before we switched to a different feeding solution, the membrane was washed by pure water directly in the filtration cell with stirring at 450 rpm for 30 min followed by filtrating pure water for 1 h to eliminate the effect of the former solute. After 2 h of refluxing in water, the light brown pristine GO dispersion turned into darker rGO dispersion. The reduction degree of rGO could be monitored by the interlayer space using XRD measurement. GO and fully reduced GO usually show single peak at about 11° and 26°, respectively, in the XRD spectra. Whereas two broadened peaks in the rGO XRD spectrum roughly located at 11° and 26° (as shown in Figure 2a) indicate that GO was partly reduced by heat.23,34 UV–vis spectra of GO and rGO give more detailed information about reduction (Figure 2b). rGO has stronger absorbance in the broad visible light region 300–700 nm, meaning larger aromatic domains were recovered than that in pristine GO.35 It is thought that these large conjugated aromatic domains

![Figure 2](image-url)

Figure 2. (a) XRD patterns and (b) UV–vis spectra of rGO and pristine GO used in this work.

RESULTS AND DISCUSSION

Design of G-CNTm. According to the previous analysis, the small interlayer distance between graphene sheets in GNms is the main reason for its low water flux. The space of the 2D nanochannels is held by the oxidation groups on the graphene sheets.21 Peng’s group reported water flux decline when high pressure was applied on GMs, and they contributed the water flux decrease to the shrinkage of the nanochannels under increasing pressure.29 Additionally, the nanochannel will also shrink at high ion strength because electrolytes screen the negatively charged carboxyl groups and suppress the electrostatic repulsion between graphene sheets.29 One possible solution to this problem is to intercalate a nanowedge into the graphene sheets to expand and hold the interlayer space of GNm. As shown in Figure 1a,b, we chose MWNTs as the carbonaceous nanowedge to prepare G-CNTm. There are two reasons for us to choose MWNTs. First, as another type of carbon material, MWNTs have excellent compatibility with graphene and the interlayer spacing can be controlled by the diameter of MWNTs precisely.30 The diameter of the MWNTs used in this paper is around 50 nm. MWNTs can spread through graphene layer and more water molecules are able to enter the 2D nanochannels. The other reason is that all the selective layer of the G-CNTm is composed of carbon material, which is chemically resistant and quite stable at high temperatures.

Fabrication of rGO. Based on our previous report and some newly published works, the reduction degree of rGO is a critical factor for the performance of GNms, because the frictionless flow of water only occurs in the regions of pristine graphene domains.11,17,19,20,23 The rich oxidation groups of GO membranes prohibit the ultrafast water transport through pristine graphene channels. On the other hand, GNm formed by highly reduced rGO that contains less oxidized functional groups will lead to narrower interlayer space between adjacent graphene flakes and low water flux.11 Additionally, highly reduced rGO containing less surface charge (mainly provided by carboxyl groups on the edge of GO sheets) leads to lower salt rejection due to the weaker Donnan exclusion.31–33 To control the reduction to a suitable degree, refluxing, a gentle reaction condition without any reducing agent, was chosen here. After 2 h of refluxing in water, the light brown pristine GO dispersion turned into darker rGO dispersion. The reduction degree of rGO could be monitored by the interlayer space using XRD measurement. GO and fully reduced GO usually show single peak at about 11° and 26°, respectively, in the XRD spectra. Whereas two broadened peaks in the rGO XRD spectrum roughly located at 11° and 26° (as shown in Figure 2a) indicate that GO was partly reduced by heat.23,34 UV–vis spectra of GO and rGO give more detailed information about reduction (Figure 2b). rGO has stronger absorbance in the broad visible light region 300–700 nm, meaning larger aromatic domains were recovered than that in pristine GO.35 It is thought that these large conjugated aromatic domains...
provide mechanical strength for the GNm by the force of hydrophobic interaction. The shoulder peak around 300 nm attributed to $n-\pi^*$ transitions of the carboxyl groups is maintained, which indicates that the carboxyl groups cannot be removed by refluxing.

Fabrication of GNm and G-CNTm. Figure 3a shows a typical SEM image of a PVDF UF membrane with a pore size of 50 nm. After deposited by rGO, the pores were uniformly covered by rGO flakes without visible defects (Figure 3b). Akin to the thin-film composite membrane (TFC) design, which is quite common in commercial NF membranes, selective layers of GNm must be defect-free to achieve a desired selectivity. On the other hand, the thickness of the selective layer should be as thin as possible because a thinner selective layer leads to lower hydraulic resistance and shorter diffusive path length for water to transport through the membrane. The thickness of the GNm can be controlled by the amount of graphene loaded on the porous support. We investigate the relationship between rGO loading and membrane performance and the GNm. The GNm with rGO loading of 25.4 mg m$^{-2}$ showed salt rejection of $>95\%$ for 0.01 M Na$_2$SO$_4$ and water flux of 4.76 L m$^{-2}$ h$^{-1}$ bar$^{-1}$. GNm with lower rGO loading than 25.4 mg m$^{-2}$ gave unreliable performance because defects (uncoated pores) appeared frequently and GNm with higher rGO loading was characterized by SEM, as shown in Figure 4a–e. The MWNT distribute more densely as the loading increased. It should be noted that G-CNTms with more MWNT loading than that of G-CNTm(8:5) led to a fragile selective layer that could not be sealed well with a silicone sealant. This is probably because too much intercalated MWNTs caused the graphene sheets to pack quite loosely and the strength of the resulting membrane is not strong enough. Figure 4f gives the surface morphology measured by AFM. The selective layer is quite thin that the surface topology is basically determined by the concave and convex of the supporting membrane.

NF Performance of G-CNTm. A NF membrane is a type of pressure-driven membrane with a pore size of about 0.5–2.0 nm and a nominal molecular weight cutoff (MWCO, molecular weight of solute that is 90% rejected by the membrane) ranging from 200 to 1000 Da. This separation ability lies between those of nonporous reverse osmosis (RO) membranes and porous UF membranes. The pore size of the GNm is decided by the size of the graphene capillaries. As reported in ref 17, the space between the graphene flakes is 1–2 nm in hydrated state, which is in the range of NF membrane. Taking advantage of the low frictional water flow inside the network of 2D nanochannels, GNms were shown to have great potential in NF applications.

We systematically investigated the NF performance of the GNm and G-CNTms. It should be noted that, in this work, we applied a PVDF support membrane with a pore size of 50 nm (200 nm in our previous work), and we found that the smaller pores of the support led to a smoother GNm surface and fewer pin holes or cracks. This improvement increased the rejection ratio for Na$_2$SO$_4$ up to 95% without losing the water flux. As shown in Table 1, the salt rejection rate sequence of GNm is R(Na$_2$SO$_4$) > R(MgSO$_4$) > R(NaCl) > R(MgCl$_2$), which shows typical performance of negatively charged NF membrane. The salt rejecting mechanism of charged NF membrane is usually explained by the combination of Donnan exclusion and steric hindrance effect. Thereby, we studied the surface charge of the GNm by ζ-potential tests (Figure 5a) and found that the GNm was highly negatively charged in a wide pH range of 2–10. This agrees with the fact that the carboxyl...
groups on the edges of GO were maintained after reflux in water. According to the Donnan exclusion theory, as water molecules transport through the membrane driven by the applied pressure, the negative charges on the GNm will repel anions from the membrane and at the same time cations are also retained because of the electroneutrality requirements. This mechanism will result in a high rejection for salts with multivalent anion and monovalentcation. Thus, GNm is predicted to have the highest selectivity for Na$_2$SO$_4$ and the lowest selectivity for MgCl$_2$, which coincides with the results in Table 1. GNm showed higher rejection for MgSO$_4$ than NaCl because both the hydrated radius values of Mg$^{2+}$ (0.43 nm) and SO$_4^{2−}$ (0.38 nm) are larger than those of Na$^+$ (0.36 nm) and Cl$^−$ (0.33 nm), indicating that the steric hindrance effect also played an important role in the salt removing ability of GNm. A more than 95% rejection ratio for Na$_2$SO$_4$ is the ever reported highest record of Gm to the best of our knowledge, which can be ascribed to the densely and uniformly packed graphene sheets structure.

The water flux of GNm is relatively low compared with some highly optimized commercial membranes. One of the possible reasons is the small size of the nanochannels. Especially, the interlayer distance of GNm will further decrease when the membrane is filtering a high concentration salt solution or under high pressure according to refs 20 and 29. On the basis of this assumption, we applied acid treated MWNTs as a nanowedge to increase the size of the nanochannels between graphene sheets. The NF performance of G-CNTms are listed in Table 1, and as expected, the pure water flux (J_w) of G-CNTms increased while the salt rejection rates decreased as more MWNTs were added into the graphene layers. (The water fluxes of GNm and G-CNTm(8:3) at different pH values are shown in Figure S1 of the Supporting Information.) Given that the $ζ$-potential of the G-CNTms did not change after MWNTs incorporated (Figure S3a), we can attribute the reduction of salt rejection rates to the increase of nanochannel size of G-CNTms. To be specific, for G-CNTm(2:1), the rejection rates for MgSO$_4$ and MgCl$_2$ decreased significantly from 82.8% and 31.7% to 30.9% and 9.6% respectively, but the rejection rates for Na$_2$SO$_4$ and NaCl only decreased from 95.1% and 59.0% to 81.0% and 39.7%. This is because the Mg$^{2+}$ has the largest hydrated radius of the four kinds of testing ions. The hydrated radius of Mg$^{2+}$, Na$^+$, Cl$^−$ and SO$_4^{2−}$ are 0.43, 0.36, 0.33 and 0.38 nm, respectively. Thereby, the steric hindrance effect played a significantly important role in the retention of MgSO$_4$ and MgCl$_2$. On the contrary, for the smaller ions, steric hindrance effect played a limited role while Donnan exclusion effect was the dominate mechanism. As a result, compared with GNm, the rejection reduction of G-CNTms for Na$_2$SO$_4$ and NaCl was much smaller than that for magnesium salts. From the trade-off relation between water flux and solute rejection of G-CNTms, we could deduce that the size of 2D nanocapillary was enlarged by inserting MWNTs into the interlayer space of graphene flakes.

In the organic dye removal tests, according to Table 1, G-CNTm showed great water flux increase without sacrificing the dye rejection. We chose negatively charged DY and MO as target molecules to test the dye removal ability of G-CNTms, whose molecular weights are 957 and 327, respectively, very close to the upper and lower limitations of the NF process. Almost all the G-CNTms showed very high retention rates both for DY (>99.5%) and MO (>96%), except G-CNTm(8:5). Particularly, the G-CNTm(2:1) showed more than twice the water flux of GNm and almost the same rejection rate with GNm. According to the previous analysis, the size of the nanochannels is enlarged by MWNTs, and more water molecules are able to enter the nanochannels in certain time from the edges or pore of the graphene flakes. But the nanochannels are still sufficiently small to block dye molecules resulting in high rejection rates for dyes. The G-CNTm(8:5) showed the highest water flux but also a little lower dye rejection for MO, which indicated that more paths for MO permeation appeared. High pressure or ion strength decreases the interlayer distance leading to even lower water flux.

Figure 5. (a) $ζ$-Potential versus pH curves of GNm and G-CNTm(2:1). (b) Normalized water flux of GNm and G-CNTms under different driven pressures when filtrating DY (0.02 mM). (c) Normalized water flux and (d) normalized rejection ratio of GNm and G-CNTm(2:1) at different salt concentrations when filtrating Na$_2$SO$_4$. DOI: 10.1021/acsami.5b00986

ACS Appl. Mater. Interfaces 2015, 7, 8147–8155
according to Peng’s report. We tested the water flux of GNM and G-CNTm when filtrating DY under different pressures (as shown in Figure 5b). All the membranes showed water flux decline under higher pressures due to the shrinkage of nanochannels, but the water flux for G-CNTm dropped much slower than that for GNM. DY rejection ratio declined kept invariant in the high pressure tests, which indicated that GNM and G-CNTm were strong enough to sustain high pressure up to 9 bar. Increasing the salt concentration also decreased the water flux of both GNM and G-CNTm(2:1) (as shown in Figure 5c) when filtrating Na2SO4. Similarly, the normalized water flux of G-CNTm(2:1) decreased slower than that of GNM as the concentration of Na2SO4 increased. On the other hand, the normalized rejection ratio for Na2SO4 of G-CNTm(2:1) dropped quicker than that of GNM (Figure 5d). The reason is that the Donnan exclusion effect is the dominate mechanism for G-CNTm(2:1) when filtrating Na2SO4, and high concentration electrolytes screen the negative charge on the graphene sheets, which weaken the Donnan exclusion effect.43 For GNM, although the Donnan exclusion effect was also screened under high ionic strength but steric hindrance effect also played an important role. As a result, the rejection ratio of GNM dropped slower than that of G-CNTm(2:1). All the results above demonstrate that MWNTs are able to hold the space between graphene layers and maintain high water flux under high pressure and high ion strength.

Assembling MWNTs into GNM makes G-CNTs a novel high-flux NF membrane with high rejection ratios to dyes, and this not only provides us a new design idea for adjusting the graphene membranes pore size with nanoadditives but also gives a solid proof for water transport between graphene layers, because if water transport directly through the pores or pin holes on graphene, adding MWNTs in graphene layers would not lead to higher water flux.

Antifouling Property of GNM and G-CNTm. Fouling resistance ability is crucial to NF membrane applications in water treatment. Fouling is usually caused by accumulation of proteins, micro-organisms and inorganic colloids on the membrane surface.44-46 Severe fouling disfavors the permeation of desired molecules, diminishes the NF performance and ultimately shortens the lifetime of the membranes. It is reported that the antifouling property is mostly influenced by the hydrophilicity and roughness of the membrane surface. That is because most foulants are absorbed on the membrane by hydrophobic interaction. However, a hydrophilic surface can form a water layer, which retards the adsorption of protein and other foulants. And a smooth membrane has less possibility of a fouling agent being stuck than that in a rough surface.47 Graphene oxide has been applied to prove the antifouling and chlorine resistance properties in several laboratories owing to its hydrophilic nature and chemical resistance, but unfortunately, such investigations on GNMs have not been reported.44,47

It might be doubted that adding MWNT into GNM will increase the roughness of the membrane and worsen antifouling properties of G-CNTm. In this paper, we studied the surface roughness of all the prepared membrane in term of average roughness (Ra) and water contact angle as a characterization of hydrophilicity which are listed in Figure 6a. Surprisingly, almost all the G-CNTm showed lower roughness compared with GNM. The Ra of the porous PVDF supporting membrane was 27.5 nm. The Ra of GNM decreased to 20.4 nm (Figure 6a), because graphene flakes covered the holes on the supporting layer. According to the AFM images in
Figures 4f, and 6b,c, most MWNTs were located at the valley of the supporting membrane and further decreased height difference of the G-CNTms leading to a smaller Ra (as low as 17.0 nm for G-CNTm(8:3)). G-CNTm(8:5) showed little higher roughness than that of GNm, indicating that too many MWNTs would destroy the flattened surface morphology. The roughness of the G-CNTms is much lower than the most common commercial PA NF membrane prepared by interfacial polymerization (170 ± 30 nm) because the reaction degree and rate of interfacial polymerization is very difficult to control. Additionally, G-CNTms were more hydrophilic than GNm, which was demonstrated by the smaller contact angles of water on the G-CNTm, as shown in Figure 6a. Based on the former analysis, G-CNTms were expected to possess better antifouling property than GNm.

We investigated the antifouling performance of both GNm and G-CNTms using 0.9 g/L BSA, SA and HA solution as foulant simulator. Three periods of water flux were recorded in Figure 7: the pure water flux (J_0) before foulant solution was fed, the water flux when filtrating foulant solution (J_1) and the water flux after foulant filtration (J_2). The water flux went through a sharp decline after foulant solution was fed into the tank. After filtration of foulant, the membrane surface was directly washed by deionized water and water flux showed a certain extent of recovery. Generally, the antifouling ability of the membranes is measured in terms of flux recovery ratio (FRR) using following equation:\(^{28}\)

\[
\text{FRR} = \frac{J_2}{J_0} \times 100\%
\]

A higher FRR value means the membrane is easier to recovery by hydraulic cleaning. It can be seen from Figure 7 that both GNm and G-CNTm(2:1) show good antifouling performances when the foulant is HA and SA. The FRR values of GNm are 89.6% and 91.5% for SA and HA. And the FRR values of G-CNTm(2:1) reach 94.4% and 86.5% for SA and HA, respectively. Whereas the FRR values of both GNm and G-CNTm(2:1) when filtrating BSA solution are around 57%, which are much lower.

In more details, the fouling process can be analyzed by calculating total fouling ratio (R_t), reversible fouling ratio (R_r) and irreversible fouling ratio (R_{ir}) (Figure 8) using the following equations:\(^{47}\)

\[
R_t = \frac{J_0 - J_f}{J_0} \times 100\%
\]

\[
R_r = \frac{J_0 - J_1}{J_0} \times 100\%
\]

\[
R_{ir} = \frac{J_0 - J_2}{J_0} \times 100\% = R_t - R_r
\]

As demonstrated in Figure 8, G-CNTm(2:1) shows a lower R_t than GNm for SA and HA, which are all lower than 20%, and this result is in accordance with the roughness and water contact angle analysis. GNm shows a higher R_t (56.4%) and reversible fouling ratio (13.9%) than G-CNTm(2:1) (51.8% and 9.3%, respectively) when filtrating BSA solution, which can also be explained by the higher roughness and lower hydrophilicity of GNm. But different from the case of SA and HA, the irreversible fouling contributes most to the total fouling of both membranes when filtrating BSA. Knowing that the molecular size of the foulants is much larger than that of nanocapillary of the graphene membrane, the irreversible fouling could not be caused by foulants that stuck into the membrane pores.\(^{49}\) Given that there are a lot of oxidation groups on the rGO sheets, the possible reason for the high R_{ir} value in the BSA antifouling test might be that protein molecules have strong interactions with the rGO sheets surface, such as hydrogen bonds and static electricity attraction.\(^{50,51}\) In fact, many research groups have taken advantage of the strong attraction between protein and graphene to fabricate advanced protein detectors or sensors.\(^{50,51}\) Additionally, the membrane could not be washed efficiently in a dead-end filtration device compared with cross-flow filtration equipment.

It might be doubted that a graphene based membrane without cross-linking is not stable enough in flowing water.\(^{13}\) In fact, based on our observation, although special care during operation is needed, graphene based membranes in our experiments are strong enough to sustain hydraulic cleaning directly on the membrane surface and even high speed cross...

Figure 8. Fouling resistance ratios of GNm and G-CNTm(2:1) for (a) BSA, (b) HA and (c) SA.
water flow in the ζ-potential test without detectable membrane damage.

CONCLUSIONS

As a summary, we assembled rGO and acid treated MWNTs to fabricate a novel graphene based high-water-flux NF membrane. Morphology studies demonstrated that uniform dispersity of MWNTs in the 2D nanochannels results in enlarged 2D nanochannels network for fast water transport. NF performance testing showed that G-CNTms with proper amount of MWNTs loadings can increase the water flux by more than 100% and maintain high dye rejection ratios for DY (>99%) and MO (>96%). MWNTs act as space holders between graphene layers and avoid shrinkage of nanochannels at high driven pressure or high ion strength, endowing G-CNTms better NF performance compared with neat GNm. The NF performance of G-CNTm is also competitive among some highly optimized commercial high-flux NF membranes.

For the first time, we preliminarily discussed the antifouling property of a graphene based NF membrane, as graphene was expected to have hopeful potential in these applications. G-CNTms showed a better antifouling ability than GNm due to lower roughness and better hydrophilicity. Compared with a traditional polymeric NF membrane, GNm and G-CNTm performed well in SA and HA antifouling tests as expected, but their antifouling performance for BSA was still under the expectation because of the strong attraction between protein and graphene sheets. Further work, both experimental and theoretical, is urgently required to gain more understanding about the mechanism of fouling graphene based NF membranes. It can be expected that, by carefully and smartly designing the nanostructure, the graphene based membrane is poised to become the next generation NF membrane with extraordinary filtration performance and long-lasting operating lifetime.

ASSOCIATED CONTENT

Supporting Information
Pure water fluxes of GNm and G-CNTm(8:3) at different pH values. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
*C. Gao. E-mail: chaogao@zju.edu.cn. Tel: +86-(0)571-87952088.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (No. 21325417 and No. 51173162) and Fundamental Research Funds for the Central Universities (No. 2013ZZX003).

REFERENCES

DOI: 10.1021/acsami.5b00986

ACS Appl. Mater. Interfaces 2015, 7, 8147–8155